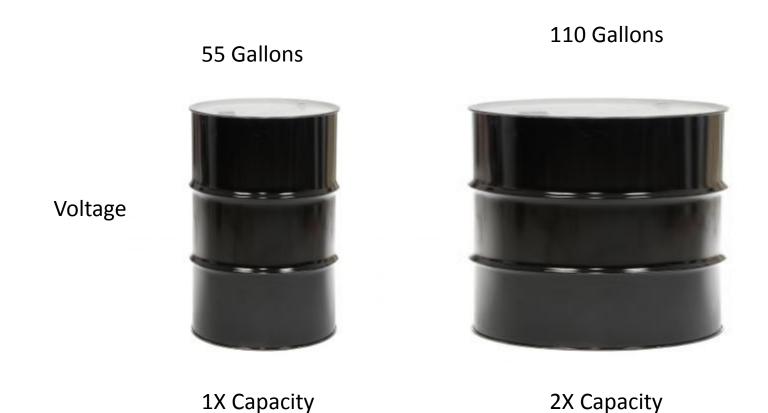
Battery 101

Types, Usage and Charging

What are Batteries?


- Batteries are devices that convert stored chemical energy into useful electrical energy
- *Batteries* produce voltage to run an electronic circuit.
- Batteries have a capacity to run the electronic circuit for a given amount of time.
- Batteries have a useful life do to the chemical reaction and reduction of it over usage.

What does a Batteries have?

- Voltage
 - Is the potential difference from Negative to the Positive terminals of the battery.
- Capacity/Current Rating(mAh, Ah, C)
 - Is the amount of energy @ the battery voltage stored to run the electronic circuit.
- Resistance (IR)
 - Is the internal limiter of the amount of capacity we can get at any instance in time. Max current output without dropping voltage.

What does all that stuff mean?

• Lets relate Voltage and Capacity to 55 Gallon Drum.

What happens when we use them?

Unscrew cap to drain 1 Gallon/Minute.

55 Gallons/55 Minutes

110 Gallons/110 Minutes

2X Capacity

What about Resistance?

- What is resistance related to in the drum?
 - Drain Hole size
 - Small hole is 1 Gallons/Minute
 - Large Hole is 4 Gallons/Minute
- I can't get any more out then 1 Gallon/Minute or 4 Gallon/Minute
- Not unless I make a bigger hole or open two drums at the same time. (Parallel Batteries 2p)

What happen to a battery over its life?

- Loses it's capacity
 - Reduced flight time. Reduced number of flight before needing recharge.
 - Chemicals are building up on Cathode and Anode terminals.
- Loses it's ability to maintain Voltage.
 - Internal Resistance (IR) rises.
 - 10 mOhm @ 50 Amps = .500 Volt drop
 - 20 mOhm @ 50 Amps = 1.000 Volt drop

Battery Life

Let relate battery life to our drum.

- Drum reducing (Capacity)
- Drum Output is closing (Rising Resistance)

Questions

- Do we understand what batteries are?
- Do we understand what Voltage is?
- Do we understand what Capacity is?
- Do we understand what IR is?
- Do we understand how these are effected over its life?
- Can we determine total capacity by measuring voltage? "No"
- Can we determine remaining capacity by measuring voltage after use? "Yes and No"

Terms we'll use before we start

- Voltage
 - Define in Volts
- Capacity
 - Defined in mAh (Milli Amp Hours), Ah (Amp Hour). How many Milliamps/Amps we can we can use in 1 hour.
 - 1000 mAh = 1 Ah = Draw 1 Amp for 1 Hour
- Cell Configuration
 - 2s1p. 2 Cells, 1 Parallel. Xs = X*Cell Voltage
 - 1s2p. 1 Cell, 2 Paralleled. Xp= X*Cell Capacity
- C Rating
 - Output current capacity in relationship to cell capacity.
 - 10C for a 2200mAh Cell = 2,200 * 10 = 22,000 mA = 22 Amps
 - 20C for a 5000mAh Cell = 5,000 * 20 = 100,000 mA = 100 Amps

Radio Control usage Battery Types

- Nickel Cadmium (Ni-Cd)
 - Sayno,
- Sealed Lead Acid (SLA)
 - Power Sonic
- Nickel Metal Hydride (Ni-MH, NiMH)
 - Sayno
- Nickel Metal Hydride (Low Lose)
 - Eneloop
- Lithium Ion (Li-Ion)
 - A123, LiFe
- Lithium Polymer (Li-Po)
 - Thunder Power, Turnigy Nano Tech

Ni-Cd

- Cell Voltage
 - Nominal 1.20v, Charged(1.40v-1.60v), Discharged 1.00v
- Discharge Curve
 - Gradual Slope
- Charge Type
 - Slow Constant Current (CC) 1/10C
 - Fast Constant Current/Voltage Drop (CC/VD) 1C
- Power Density
 - 40-60 Wh/kg (Watt = Volts * Amps)
 - (1.2v * 1,100mA = 1.32 W) @ 24 grams = 55 Wh/kg (KR-1100AAU)
- Self Discharge
 - 10%/Month
- Life Cycles
 - 2000 Cycles

Ni-MH

- Cell Voltage
 - Nominal 1.20v, Charged(1.40v-1.60v), Discharged 1.00v
- Discharge Curve
 - Gradual Slope
- Charge Type
 - Slow Constant Current (CC) 1/10C
 - Fast Constant Current/Voltage Drop (CCVD) 1C
- Power Density
 - 60-120 Wh/kg (Watt = Volts * Amps)
 - (1.2v * 1,600mA = 1.92 W) @ 31 grams = 62 Wh/kg (HHR160AA/B)
 - (1.2v * 2,300mA = 2.76 W) @ 30 grams = 90 Wh/kg (NH15-2300)
- Self Discharge
 - 1.2% (Low Lose), 10%/Month

Adobe Acrobat
Document

- Life Cycles
 - 500-1000 Cycles

Sealed Lead Acid

- Cell Voltage
 - Nominal 2.10v, Charged(2.25v), Discharged 1.75v
- Discharge Curve
 - Gradual Slope
- Charge Type
 - Constant Voltage/Current Limited (CV)
- Power Density
 - 30-40 Wh/kg (Watt = Volts * Amps)
- Self Discharge
 - 3%-20%/Month
- Life Cycles
 - 500-800 Cycles

Lithium Ion

- Cell Voltage
 - Nominal 3.30v-3.70v, Charged(3.60v-4.20v), Discharged (3.00v-3.30v)
- Discharge Curve
 - Flat Slope / Sharp drop-off at end
- Charge Type
 - Constant Current/Constant Voltage (CC/CV) 1C-5C / (3.60v-4.20v)
 - Should use Balancing Charger
- Power Density
 - 100-250 Wh/kg (Watt = Volts * Amps)
 - (3.3v * 1,100mA = 3.63 W) @ 39 grams = 93 Wh/kg (APR18650) 25C
 - (3.7v * 2,300mA = 8.51 W) @ 48 grams = 177 Wh/kg (ICR18650) 2C
- Self Discharge
 - 5%-10%/Month
- Life Cycles
 - 400-1200 Cycles

Adobe Acrobat Adobe Acrobat Document Document

Adobe Acrobat Document

Lithium Polymer

- Cell Voltage
 - Nominal 3.70v, Charged 4.20v, Discharged 3.00v, Safe Discharge 3.30v
- Discharge Curve
 - Flat Slope / Sharp drop-off at end
- Charge Type
 - Constant Current/Constant Voltage (CC/CV) 1C-5C / 4.20v
 - ALWAYS!!! Balancing Charger (I will explain why later)
- Power Density
 - 150-400 Wh/kg (Watt = Volts * Amps)
 - 3.7v * 950mA = 3.51 W) @ 25 grams = 140 Wh/kg (Nano-Tech)
 - 3.7v * 850mA = 3.14 W) @ 20 grams = 155 Wh/kg (Cell)
- Self Discharge
 - <5%/Month
- Life Cycles
 - 500-1000 Cycles

Adobe Acrobat Document

Adobe Acrobat Document

Typical usages of different types of Batteries.

- Ni-Cd
 - Receiver pack
 - Transmitter pack
- Ni-MH
 - Receiver pack
 - Transmitter pack
- Sealed Lead Acid
 - Starter Box
 - Glow Driver Panels

Battery Usages

- Lithium Ion
 - Receiver Packs
 - With and Without regulators (Diode Drop)
 - Transmitter Packs
 - Motor Packs
- Lithium Polymer
 - Receiver Packs
 - With Regulator
 - Motor Packs
 - Motor and Receiver Pack Combo
 - (ESC with BEC) Electronic Speed Control with Battery Elimination Circuit

Questions on Types of Batteries?

- Do we know what is different for the different battery types?
- Do we know why a different type is better in some application then others?
- Is there any other types anyone has used for radio control?

Charging "Doing it Correctly" and "Safely"

Ni-Cd

- Constant Current (CC) 1/10C
 - Wall Wart with Radio System
 - Charger System
- Constant Current / Voltage Drop (CC/VD) 1C (Some Vendors)
 - Charger System Needed to sense VD to turn off charging cycle.
- Over Charging
 - Limited 1/10C
 - Possible @ 1C
- Cycling
 - To determine Capacity after long term use.
 - 3-5 Charge/Discharge Cycles @ 1/2C Discharge (Charger System)

Ni-MH

- Constant Current (CC) 1/10C
 - Wall Wart with Radio System
 - Charger System
- Constant Current / Voltage Drop (CC/VD) 1C
 - Charger System Needed to sense VD to turn off charging cycle.
- Over Charging
 - Limited 1/10C
 - Possible @ 1C
- Cycling
 - To determine Capacity after long term use.
 - 3-5 Charge/Discharge Cycles @ 1/2C Discharge (Charger System)

- Sealed Lead Acid
 - Constant Voltage (CV)
 - Wall Wart with Battery
 - Charger System
 - Over Charging
 - Limited
 - Cycling
 - Not Normally done.

Lithium Ion

- Constant Current/Constant Voltage (CC/CV) 1-25C
 - Charger System Only
 - Can be Charged with Balancer or not.
 - » Balancer keep all Cells in Pack within set range (+-10mV)

Over Charging

- Limited if Charger System Set Correct.
- Possible if Charging with the incorrect settings on Charger
- Limited danger if over charged.

Cycling

 Not Normally done. Discharge current to simulate usage is to high for most Charger System.

Lithium Polymer

- Constant Current/Constant Voltage (CC/CV) 1-25C
 - Charger System Only
 - !! MUST !! be Charged with Balancer to be SAFE.
 - » Balancer keep all Cells in Pack within set range (+-10mV)

Over Charging

- Limited if Charger System Set Correct.
- Possible if Charging with the incorrect settings on Charger
- Very Dangerous if over charged.

Cycling

 Not Normally done. Discharge current to simulate usage is to high for most Charger System.

What is Balancing and Why?

What

 Balancing is when the Charger System monitors all the different cells in a packs voltage individually and matches them with-in +- 10 mV.

Why

- This prevent the different cells in a pack from rising in voltage and causing other cells in the pack to become uncharged.
- What causes this voltage difference?
 - Difference in Internal Resistance (IR) of the different cells in the pack causes different charge rates per cell.

Balancing what it is

Why is it important?

- So you don't Burn the House Down !!!
- How could this happen?
 - 5 Cell pack with one bad cell @ (0v)
 - 5 Cell Pack should be 18.50v. With bad cell 14.80v.
 - Charging 4 good cells to 21.0v (4.2*5). 21.0/4 = 5.25v
 - 1.05V over the max voltage per cell. (Over Charged)
- Balancing during charging will prevent this.
- !! NEVER !! Charger Li-Po without Balancing during charging.

Question on Charging and Balancing?

- Do we understand the different type of chargers systems needed for the different types of batteries?
- Do we understand why the balancing of Li-Po during charging is VERY important?
- Can measuring the voltage of our battery pack tell us if it's charged? "Yes and No"
- Can measuring the voltage of our battery pack tell us how much capacity we have left? "No"

Charger Systems what's on Market?

- AC/DC Input
 - Wall Plug powered/12V DC powered.
- Single Output
 - 4s, 6s, 10s
- Multi Output
 - Dual Output, Quad Output
- Different Wattage
 - 50W, 100W, 200W 400W, 1,000W, 50W/Output
- Different Battery types in same Charger

Chargers

Single Output 50W

Single Output 400W

Dual Output 200W Each

Single/Dual Output 260W Total

What else should we know about our Batteries?

Li-Po Break-In, Should we?

- Yes, Max 60-70% discharge @ 80% Rated Current Max Short Burst, 50% Rated Current Normally.
- 5 Cell @ 5,000mAh @ 20C
 - 80 Amp Max, 50 Amp Normal, Cell ending voltage 3.75v-3.85v
- 7-10 Flights as above. Note Charge put into Pack during charging.

Storage Charge, Should we?

- Yes if you want to or use same as above for last flight before storage.
- 3.85v Storage charge. Some chargers have this mode.

What else should we know about our Batteries?

- Should we Cycle our Ni-Cd's and Ni-MH's?
 - Yes, To determine their capacity and reduce memory effect of Ni-Cd's
- Should we record or know what amount of charge we are putting into our Li-Po's
 - Yes, This will help not over Dis-Charging them and help maximize their usefully life.
 - Shouldn't Dis-Charge over 85%-90%
 - 4,250mA for 5,000mAh pack

What else should we know about our Batteries?

- Should we know our IR for each Cell on our Li-Po's.
 - Some Chargers Report these values
 - It's helpful in knowing when the Pack is getting near its end of life.
 - IR(Internal Resistance) will increase as cell life depletes.
- Should we know the number of cycles on each pack?
 - It's nice in determining number of flight we have gotten from each pack. Also help determine the best pack to buy, cost / flight vs. cost.
 - Help us know when we will need to start looking at replacing our packs.

Battery 101 Wrap-Up

- Pick the battery that best fits your need.
- Pick the correct Cell size and Cell configuration and output capacity rating. (10C vs. 20C)
- Don't !! EVER !! charge Li-Po's without a Balancer or Balance Charger.
- Know what you're doing to your packs so you don't damage them or reduce their life.

Questions?

• Thank You